Journal of Chromatography, 570 (1991) 396–398 Biomedical Applications Elsevier Science Publishers B.V., Amsterdam

CHROMBIO. 5998

Short Communication

Thin-layer chromatography of urinary 17-oxosteroids using dansylhydrazine as a prelabelling reagent^a

ZDENA TOMSOVÁ

Laboratory for Endocrinology and Metabolism, 3rd Medical Department. Charles University, Prague 128 21 (Czechoslovakia)

(First received April 4th, 1991; revised manuscript received May 6th, 1991)

ABSTRACT

This paper describes a modification of a high-performance liquid chromatographic method for measurement of 17-oxosteroids in biological fluids for use with thin-layer chromatography and fluorometric scanning detection. After extraction from urine samples with Separon- C_{18} microcolumns, free oxosteroids were labelled with dansylhydrazine in acetonitrile–acetic acid and chromatographed on silica gel F-254 plates with the solvent system chloroform–methanol (97:3). Linearity of fluorescence detection (Shimadzu CS-9000 densitometer) was obtained between 30 and 1000 ng.

INTRODUCTION

Kawasaki *et al.* [1] and Iwata and Suga [2] have described a method for the measurement of 17-oxosteroids in biological fluids. It involved labelling with dansylhydrazine, high-performance liquid chromatographic (HPLC) separation and fluorometric detection.

We have modified the method for use with thin-layer chromatography (TLC). Free oxosteroids are extracted after hydrolysis from urine samples with Separon SGX C_{18} cartridge (Tessek), labelled with dansylhydrazine in acetonitrile–acetic acid, chromatographed on silica gel F-254 plates in the solvent system chloroform–ethanol, and detected by fluorescence at 310 nm (excitation; the emission wavelength is eliminated by a filter) on the densitometer Shimadzu CS-9000. A reproducible separation was obtained, and lineary in the fluorescence intensity was observed in the range of 30–1000 ng.

^a Presented in part at the VIIIth International Congress on Hormonal Steroids, The Hague, Sept. 17-21, 1990.

EXPERIMENTAL

Urine samples (4 ml) were hydrolysed with arylsulphatase and β -glucuronidase (Boehringer, Mannheim, Germany; 70 μ l of the commercial solution in 4 ml of 2 M acetate buffer, pH 4.6) at 37°C for 48 h. Then they were extracted by Separon SGX C₁₈ cartridges (Tessek, Prague, Czechoslovakia). The cartridges were washed with 3 ml of water and 3 ml of 20% methanol, and the 17-oxosteroids were eluted with 3 ml of methanol and dried under nitrogen. The internal standard (5 μ g of corticosterone in 20 μ l of methanol) was added, and the labelling reaction was performed by adding 200 μ l of 0.2% (w/v) of dansylhydrazine (Sigma, Deisenhofen, Germany) in acetonitrile (Merck, Damstadt, Germany) and 50 μ l of acetic acid to the dry sample. The mixture was incubated at 37°C for 45 min, them 200 μ l of a 0.5% (w/v) suspension of sodium pyruvate (Lachema, Brno, Czechoslovakia) in acetonitrile was added. After further incubation at 37°C for 20 min, 3 ml of chloroform and 1 ml of 0.25 M sodium hydroxide were added. After vortex-mixing for 1 min the water layer was discarded. Another 2 ml of water were added, and after vortex-mixing the water layer was again discarded. The chloroform layer was dried with anhydrous sodium sulphate and evaporated under nitrogen. The residue was dissolved in chloroform, and $100-\mu$ l samples were used for spotting.

Each 100- μ l chloroform extract was applied by a Hamilton syringe to a TLC plate (Silica Gel F-254 Merck, 20 × 20 cm). The plate was developed twice in chloroform–ethanol (97:3). The chromatography was performed in a tank not saturated with the solvent system at room temperature (22°C) at a distance of 18 cm. The fluorescence was quantatively measured at 310 nm (excitation; the emission wavelength was eliminated by a filter) on the Shimadzu CS-9000 densitometer.

RESULTS AND DISCUSSION

The R_F values after double developement are: corticosterone, 0.22; 11 β -hydroxyetiocholanolone, 0.29; 11 β -hydroxyandrosterone and oxoetiocholanolone, 0.32; oxoandrosterone, 0.38; etiocholanolone, 0.49; dehydroepiandrosterone, 0.56; androsterone, 0.60. Known amounts of individual oxosteroids were added to a sample of patient's urine, and the recoveries (after subtracting the result without addition of the standard from the total result with the addition of the standard, expressed as μ g per 4 ml) and coefficients of variation (C.V.) were calculated. The results are shown in Table I.

This modification of the method described by Kawasaki *et al.* [1] and by Iwata and Suga [2] provides a simple possibility of group estimation of oxosteroids without HPLC; the chief advantage is the possibility of running ten urine samples in one chromatography step.

TABLE I

Steroid	Amount added (μg per 4 ml)	Final amount" (µg per 4 ml)	Recovery (%)	C.V. (%)
11-Hydroxyetiocholanolone	0	2.04 ± 0.016		0.78
$(3\alpha, 11\beta$ -dihydroxy-5 β -androstan-17-one)	5.0	6.83 ± 0.514	97.0	7.35
11-Hydroxyandrosterone	0	$4.33~\pm~0.51$		11.77
$(3\alpha, 11\beta$ -dihydroxy- 5α -androstan-17-one) and oxoctiocholanolone	5.0 + 5.0	14.05 ± 0.644	98.4	4.58
(3α-hydroxy-5β-androstan-11,17-dione)				
Oxoandrosterone	0	1.26 ± 0.036		3.05
(3α-hydroxy-5α-androstan-11,17-dione)	5.0	6.16 ± 0.257	98.6	4.17
Etiocholanolone	0	$7.49~\pm~0.423$		5.84
(3α-hydroxy-5β-androstan-17-one)	5.0	12.32 ± 0.322	98.65	2.61
Dehydroepiandrosterone	0	2.21 ± 0.101		4.57
$(3\beta$ -hydroxy-5-androstan-17-one)	5.0	7.30 + 0.174	101.3	2.38
Androsterone	0	4.25 ± 0.106		2.49
$(3\beta$ -hydroxy-5 α -androstan-17-one)	5.0	9.13 ± 0.18	98.86	1.97

ANALYTICAL RECOVERY OF 17-OXOSTEROIDS FROM URINE AND PRECISION OF ASSAY

^{*a*} Means \pm 95% confidence intervals; n = 6.

REFERENCES

1 T. Kawasaki, M. Maeda and A. Tsuji, J. Chromatogr., 226 (1981) 1.

2 J. Iwata and T. Suga, J. Chromatogr., 474 (1989) 363.